We have, AD2=BD×DC
⇒ AD×AD=BD×DC
⇒ ADDC=BDAD
Thus, in △ABD and △ACD, we have
ADDC=BDAD
and, ∠BDA=∠CDA [Each equal to 90∘]
So, by SAS-criterion of similarity, we get
△DBA∼△DAC
⇒ △DBA and △DAC are equiangular
⇒ ∠1=∠C and ∠2=∠B
⇒ ∠1+∠2=∠B+∠C
⇒ ∠A=∠B+∠C [∵∠1+∠2=∠A]
But, ∠A+∠B+∠C=180∘
∴ ∠A+∠A=1800 [∵∠B+∠C=∠A]
⇒ 2∠A=1800⇒∠A=90∘
Hence, ∠BAC=900