wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In â–³ABC, if cosA+2cosB+cosC=2 then a,b,c are in

A
A.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
H.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A.G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A A.P
formulaused
cosA+cosB=2cos(A+B2)cos(AC2)
2sinAcosA=sin2A
Given
CosA+2CosB+CosC=2
CosA+CosC=22CosB
2Cos(A+C2)Cos(AC2)=2(1CosB)
2Cos(πB2)Cos(AC2)=2(2sin2B2)
sin(B2)cos(AC2)=2sin2(B2)
cos(AC2)=2sin(B2)
cos(B2)cos(AC2)=2sin(B2)cos(B2)
cos(π(A+C)2)cos(AC2)=sinB
sin(A+C2)cos(AC2)=sinB
2sin(A+C2)cos(AC2)=2sinB
sinA+sinC=2sinB.........(i)
nowfromsinerule
SinAa=sinBb=sinCc=k
sinA=ka,sinB=kb,sinC=kc
so(i)becomes
ka+kc=2kb
a+c2=b
HencesidesofthetriangleareinA.P

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon