In △ABC, if cosA+cosC=4sin2B2, then a,b,c (sides of the triangle) are in
A
A.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A A.P cosA+cosC=4sin2B2 ⇒2cos(A+C2)+cos(A−C2)=4sin2B2⇒cos(A−C2)=2sinB2⇒cosA2cosC2+sinA2sinC2=2sinB2⇒√s(s−a)bc√s(s−c)ab+√(s−b)(s−c)bc√(s−a)(s−b)ab=2√(s−a)(s−c)ac ⇒sb+s−bb=2⇒a+c=2b So, they are in A.P.