Consider the diagram of the triangle shown below.
We know that,
A+B+C=180∘
⇒A=180∘−(B+C)
sinA=sin(180∘−(B+C))=sin(B+C)
Given:
cosC=sinA2sinB
sinA=2sinBcosC
sin(B+C)=2sinBcosC
sinBcosC+cosBsinC=2sinBcosC
sinBcosC−cosBsinC=0
sin(B−C)=0
B−C=0
B=C
Hence, the triangle is an isosceles triangle because two interior angles are equal to each other.