In triangle ABC, if cotA,cotB,cotC are in A.P., then a2,b2,c2 are in:
A
A.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A.G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AA.P. Given: cotA,cotB,cotC are in A.P.
Thus cotB−cotA=cotC−cotB ⇒sin(A−B)sinAsinB=sin(B−C)sinBsinC ⇒sin(A−B)⋅sinC=sin(B−C)⋅sinA ⇒sin(A−B)⋅sin(A+B)=sin(B−C)⋅sin(B+C) ⇒sin2A−sin2B=sin2B−sin2C ⇒2sin2B=sin2A+sin2C ∴2b2=a2+c2 ⇒a2,b2,c2 are in A.P.