We have,
1a+b + 1a+c = 3a+b+c
Then prove that.
∠A=600
Now,
⇒ 1a+b + 1a+c = 3a+b+c
⇒a+c+a+b(a+b)(a+c)=3a+b+c
⇒2a+b+ca2+ac+ab+bc=3a+b+c
⇒(2a+b+c) (a+b + c) = 3 (a2 + ac + ab +bc)
⇒2a2+2ab+2ac+ab+b2+bc+ac+bc+c2=3a2+3ac+3a+3ab+3bc
⇒a2=−bc+b2+c2
bc=b2+c2−a2
1=b2+c2−a2bc
on divide both side by 2.
12=b2+c2−a22bc
12=CosA
CosA=Cosπ6
A=π6
Hence, this is the answer.