wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC if ¯¯¯¯¯¯¯¯AB=¯¯¯u¯¯¯u¯¯¯v¯¯¯v and ¯¯¯¯¯¯¯¯AC=2¯¯¯u¯¯¯u where ¯¯¯u¯¯¯v then

A
1+cos2A=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cos2A=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2+cos2A=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos4A=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1+cos2A=0
BC=ACAB

=ˆu+ˆv
Let angle between ˆu&ˆv is α
So,cosA=AB.ACABAC=2|ˆu|22ˆu.ˆv|ˆu|2+|ˆv|22|ˆu||ˆu|cosα.2|ˆu|

=22.1.cosα22cosα.2=22cosα22cosα.2

So,cos2A=2cos2A1=2cosα

cos(πβ)=AB.BCAB.BC=|ˆu|2|ˆv|2|ˆu+ˆv||ˆuˆv|=0

cosB=0B=π2
So,
cos2B=2cos2B1=01=1
cos(πC)=(BC).(AC)BCAC

cosC=(ˆu+ˆv)(2ˆu)|ˆu|2+|ˆv|2+2|ˆu||ˆv|cosα.2|ˆu|

=2|ˆu|2+ˆu.ˆv2+2cosα.2=2+2cosα2+2cosα.2

cosC=(2+2cosα)2+2cosα.2

So,cos2C=2cos2C1=2.(2+2cosα)2(2+2cosα).41

So,cos2A+cos2B+cos2C=2cosα1+2cosα

cos2A=1

1+cos2A=0
Hence, the option (A) is the correct answer.

1148389_1199469_ans_f8305091e410469aa7457a8ee189a244.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon