The correct option is
A 1+∑cos2A=0−−→BC=−−→AC−−−→AB
=ˆu+ˆv
Let angle between ˆu&ˆv is α
So,cosA=−−→AB.−−→AC∣∣∣−−→AB∣∣∣∣∣∣−−→AC∣∣∣=2|ˆu|2−2ˆu.ˆv√|ˆu|2+|ˆv|2−2|ˆu||ˆu|cosα.2|ˆu|
=2−2.1.cosα√2−2cosα.2=2−2cosα√2−2cosα.2
So,cos2A=2cos2A−1=−2cosα
cos(π−β)=−−→AB.−−→BC∣∣∣−−→AB∣∣∣.∣∣∣−−→BC∣∣∣=|ˆu|2−|ˆv|2|ˆu+ˆv||ˆu−ˆv|=0
⇒−cosB=0⇒B=π2
So,
cos2B=2cos2B−1=0−1=−1
cos(π−C)=(−−→BC).(−−→AC)∣∣∣−−→BC∣∣∣−−→AC∣∣∣∣∣∣
−cosC=(ˆu+ˆv)(2ˆu)√|ˆu|2+|ˆv|2+2|ˆu||ˆv|cosα.2|ˆu|
=2|ˆu|2+ˆu.ˆv√2+2cosα.2=2+2cosα√2+2cosα.2
∴cosC=−(2+2cosα)√2+2cosα.2
So,cos2C=2cos2C−1=2.(2+2cosα)2(2+2cosα).4−1
So,cos2A+cos2B+cos2C=−2cosα−1+2cosα
⇒∑cos2A=−1
⇒1+∑cos2A=0
Hence, the option (A) is the correct answer.