In â–³ABC if r1=r2+r3+r. Then the triangle is
r1=r2+r3+r⟹r1−r=r2+r3
⟹sinA2cosB2cosC2−sinA2sinB2sinC2=sinB2cosA2cosC2−sinC2cosA2cosB2
⟹sinA2(cosB2cosC2−sinB2sinC2)=cosA2(sinB2cosC2−sinC2cosB2)
⟹sinA2cos(B+C)2=cosA2sin(B+C)2
⟹tanA2=tan(B+C)2
⟹A=B+C⟹2A=180∘⟹A=90∘