stanA2=2stanB2=3stanC2
⟹tanA26=tanB23=tanC22=K
Since A2+B2+C2=90∘
tanA2tanB2+tanB2tanC2+tanC2tanA2=1
⟹(6×3+3×2+2×6)k2=1⟹k=16
∴sinA=2tanA21+tan2A2=1
Similarly, sinB=45 and sinC=35
∴b2ac=sin2BsinAsinC=1615
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2