wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC, if sin2A+sin2B+sin2C=2, then the triangle is


A

Right angle but need not be isosceles

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

Right angled and isosceles

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

Isosceles but need not be right angled

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

Equilateral

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

Right angle but need not be isosceles


Explanation for the correct options:

Determine the type of triangle:

sin2A+sin2B+sin2C=2[Given]sin2A+sin2B+sin2C-2=01-sin2A+1-sin2B+sin2C=0cos2A+cos2Bsin2C=02cos2A+2cos2B2sin2C=0[Multiplyingbyon2bothsides](1+cos2A)+(1+cos2B)2(1cos2C)=02+cos2A+cos2B2+2cos2C=0cos2A+cos2B+2cos2C=0[cos2A+cos2B=2cos(A+B)cos(AB)bytrigonometricidentity]2cos(A+B)cos(AB)+2cos2C=0cos(A+B)cos(AB)+cos2C=0cos(πC)cos(AB)+cos2C=0[InatriangleA+B+C=π]-cosCcos(AB)+cos2C=0cosCcos(AB)cosCcosC=0cosCcos(AB)cosCcos[π-(A+B)]=0[InatriangleA+B+C=π]cosCcos(AB)+cosCcos(A+B)=0cosC[cos(AB)+cos(A+B)]=0cosC(2cosAcosB)=0

This shows that, one of the angles A,BorC must be90degrees.

Now, let us assume A=π2=90° , then, B+C=π2

sin2A=sin2π2=1sin2B+sin2C=sin2π2C+sin2C=cos2C+sin2C=1sin2A+sin2B+sin2C=2

So this is a right-angled triangle but need not necessarily be isosceles.

Hence, option A is the correct answer.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon