The correct option is D c cot C2
{cotA2+cotB2}{a sin2B2+b sin2A2}
={cotC2sinA2sinB2}{asin2B2+b sin2A2}
={cosC2}{asinB2sinA2+bsinA2sinB2}
=√s(s−c)ab⎧⎪⎨⎪⎩a√(s−a)(s−c)ac√(s−b)(s−c)bc+b√(s−b)(s−c)bc√(s−a)(s−c)ac⎫⎪⎬⎪⎭
=√s(s−c)ab{√(s−as−b)ab+√(s−bs−a)ab}
=√s(s−c)√s−a+s−b√(s−a)(s−b)={√s(s−c)√2s−a−b√(s−a)(s−b)}
=c√s(s−c)(s−a)(s−b)=c cotC2.
Trick : Such type of unconditional problems can be checked by putting the particular values for a = 1, b=√3, c = 2 and A = 30^{o}, B = 60^{o}, C = 90^{o}. \)
Hence expression is equal to 2 which is given by (d).