Since the line PQ divides △ABC into two equal parts,
area(△APQ)=area(△BPQC)
⇒ area(△APQ)=area(△ABC)−area(△APQ)
⇒ 2area(△APQ)=area(△ABC)
∴ area(△ABC)area(△APQ)=21 ---- ( 1 )
Now, in △ABC and △APQ,
∠BAC=∠PAQ [ Common angles ]
∠ABC=∠APQ [ Corresponding angles ]
∴ △ABC∼△APQ [ By AA similarity ]
∴ area(△ABC)area(△APQ)=AB2AP2
∴ 21=AB2AP2 [ From ( 1 ) ]
⇒ ABAP=√21
⇒ AB−BPAB=1√2
⇒ 1−BPAB=1√2
⇒ BPAB=1−1√2
∴ BPAB=√2−1√2