R.H.S=(b−c)2+4bcsin2(A/2)
=(b−c)2+2bc(1−cosA)
=b2+c2−2abcosA=a2
Now squaring the second relation,
(b−c)tanϕ=2√bcsin(A/2)
We get (b−c)2tan2ϕ=4bcsin2(A/2)
Putting the value of 4bcsin2(A/2) from (2) in (1), we get
a2=(b−c)2+(b−c)2tan2ϕ
=(b−c)2sec2ϕ
or a=(b−c)secϕ