wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC prove that, a3sin(BC)+b3sin(CA)+c3sin(AB)=0.

Open in App
Solution

L.H.S=a3sin(BC)+b3sin(CA)+c3sin(AB)

As we know that sinAa=sinBb=sinCc=k by sine rule

cosA=b2+c2a22bc,cosB=c2+a2b22ac,cosC=b2+a2c22ab

So,a3sin(BC)=a3[sinBcosCcosBsinC]

=a3[kb×b2+a2c22abc2+a2b22ac×kc]

=ka3×b2+a2c2c2a2+b22a

=ka2(b2c2)

So,b3sin(CA)=b3[sinCcosAcosCsinA]

=b3[kc×b2+c2a22bca2+b2c22ab×ka]

=kb3×b2+c2a2a2b2+c22b

=kb2(c2a2)

So,c3sin(AB)=c3[sinAcosBcosAsinB]

=c3[ka×a2+c2b22acb2+c2a22bc×kb]

=kc3×a2+c2b2b2c2+a22c

=kc2(a2b2)

Now adding all these we get
=k[a2(b2c2)+b2(c2a2)+c2(a2b2)]

=k[a2b2a2c2+b2c2b2a2+c2a2c2b2]

=k[0]

=0

=R.H.S

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon