L.H.S=a3sin(B−C)+b3sin(C−A)+c3sin(A−B)
As we know that sinAa=sinBb=sinCc=k by sine rule
cosA=b2+c2−a22bc,cosB=c2+a2−b22ac,cosC=b2+a2−c22ab
So,a3sin(B−C)=a3[sinBcosC−cosBsinC]
=a3[kb×b2+a2−c22ab−c2+a2−b22ac×kc]
=ka3×b2+a2−c2−c2−a2+b22a
=ka2(b2−c2)
So,b3sin(C−A)=b3[sinCcosA−cosCsinA]
=b3[kc×b2+c2−a22bc−a2+b2−c22ab×ka]
=kb3×b2+c2−a2−a2−b2+c22b
=kb2(c2−a2)
So,c3sin(A−B)=c3[sinAcosB−cosAsinB]
=c3[ka×a2+c2−b22ac−b2+c2−a22bc×kb]
=kc3×a2+c2−b2−b2−c2+a22c
=kc2(a2−b2)
Now adding all these we get
=k[a2(b2−c2)+b2(c2−a2)+c2(a2−b2)]
=k[a2b2−a2c2+b2c2−b2a2+c2a2−c2b2]
=k[0]
=0
=R.H.S
Hence proved