wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC, prove that a sin (B - C) + b sin (C - A) + c sin (A - B) = 0

Open in App
Solution

Using the following trigonometric identity:
sin (A - B) = sin A cos B - sin B cos A
We get
a sin (B - C) + b sin (C - A) + c sin (A - B) = a sin B cos C - a sin C cos B + b sin C cos A - b sin A cos C + c sin A cos B - c sin B cos A = cos A (b sin C - c sin B)
+ cos B (c sin A - a sin C) + cos C (a sin B - b sin A)
According to the sine theorem we have
asin A=bsin B=csin C
Therefrom
b sin C - c sin B = c sin A - a sin C = a sin B - b sin A = 0
And we get
a sin (B - C) + bsin (C - A) + c sin (A - B) = 0.


flag
Suggest Corrections
thumbs-up
49
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon