wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC prove that cosA2+cosB2+cosC2=4.cosπ-A4.cosπ-B4.cosπ-C4.


Open in App
Solution

Prove the given equation.

In the question, it is given that ABC is a triangle.

We know that, according to the angle sum property A+B+C=π.

Simplify the Right-hand side.

4·cosπ-A4·cosπ-B4·cosπ-C42·2cosπ-A4·cosπ-B4·cosπ-C4cosC+cosD=2cosC+D2cosC-D22·cosπ2-A+B4+cosB-A4·cosπ-C4cosπ2-A+B4=sinA+B42·cosπ-C4sinA+B4+2·cosπ-C4cosB-A4C=π-A+B2cosA+B4sinA+B4+2cosA+B4cosB-A4sinA+B2=2cosA+B4sinA+B4sinA+B2+cosB2+cos-A2A+B=π-C,cos-x=cosxsinπ2-C2+cosB2+cosA2sinπ2-x=cosxcosC2+cosB2+cosA2=LHS

Hence proved cosA2+cosB2+cosC2=4.cosπ-A4.cosπ-B4.cosπ-C4.


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon