In a triangle ABC prove that cosA2+cosB2+cosC2=4.cosπ-A4.cosπ-B4.cosπ-C4.
Prove the given equation.
In the question, it is given that ABC is a triangle.
We know that, according to the angle sum property ∠A+∠B+∠C=π.
Simplify the Right-hand side.
4·cosπ-A4·cosπ-B4·cosπ-C4⇒2·2cosπ-A4·cosπ-B4·cosπ-C4∵cosC+cosD=2cosC+D2cosC-D2⇒2·cosπ2-A+B4+cosB-A4·cosπ-C4∵cosπ2-A+B4=sinA+B4⇒2·cosπ-C4sinA+B4+2·cosπ-C4cosB-A4∵∠C=π-∠A+∠B⇒2cosA+B4sinA+B4+2cosA+B4cosB-A4∵sinA+B2=2cosA+B4sinA+B4⇒sinA+B2+cosB2+cos-A2∵∠A+∠B=π-∠C,cos-x=cosx⇒sinπ2-C2+cosB2+cosA2∵sinπ2-x=cosx⇒cosC2+cosB2+cosA2=LHS
Hence proved cosA2+cosB2+cosC2=4.cosπ-A4.cosπ-B4.cosπ-C4.