wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC prove that cosA+cosB+cosC=1+rR

Open in App
Solution

cosA+cosB+cosC=1+rR
Consider, cosA+cosB+cosC
=2cos(A+B)2cos(AB)2+12sin2C2 A+B+C=π
=1+2cos(πC)2cos(AB)22sin2C2
=1+2sinC2cos(AB)22sin2C2
=1+2sinC2[cos(AB2)sinC2]
=1+2sinC2[cos((AB)2)sin(π2)(A+B)2]
=1+2sinC2[cos((AB)2)cosA+B2]
=1+2sinC2[2sinA2sinB2]
=1+4sinC2sinA2sinB2
=1+4(sa)(sb)ab(sb)(sc)bc(sa)(sc)ac {multiple and divide with s2}
1+4[(s(sa)(sb)(sc))2a2b2c2s2]
=1+4(s(sa)(sb)(sc)sabc
=1+42sabc
=1+(s)(4abc)
=1+rR.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle Sum Property
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon