Let us rearrange the given expression as follows:
sin2A2 − sin2C2 +sin2B2We know that sin2x −sin2y = sin(x+y)sin(x−y)
Hence,
sin2A2 −sin2C2 +sin2B2 = sin(A+C2) sin(A−C2)+ 1 −cos2B2
=cos(B2) sin(A−C2) − cos2B2 + 1
=cos(B2) [sin(A−C2) − cos(B2)] +1
=cos(B2) [sin(A−C2) − sin(A+C2)]+1
We know that sin(x−y)−sin(x+y)=−2cosxsiny
Using the above equality, the expression can be reduced to,
sin2A2 −sin2C2 +sin2B2 = 1 − 2cos(A2) cos(B2) sin(C2)