Let cos A = x, cos B = y, cos C = z then,
x + y = 2 cos A+B2 cos A−B2 > 0
x2+y2≥2xy
Add x2+y2 to both sides
∴2(x2+y2)>(x+y)2
Since x + y is positive we can divide by it
∴2(x2+y2)(x+y)>x+y
Similarly write other inequalities and add
∴2∑(x2+y2)(x+y)>2(x+y+z)
or∑(cos2A+cosB)(cosA+cosB)>(cosA+cosB+cosC)>1+rR