wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC, prove the following:

a-b cos C2=c sin A-B2

Open in App
Solution

Let asinA=bsinB=csinC=k ...(1)

Consider the LHS of the equation a-b cos C2=c sin A-B2
LHS=a-bcosC2 =ksinA-sinBcosC2 using 1 =k×2sinA-B2cosA+B2cosC2 =2ksinA-B2cosA+B2cosπ-A+B2 A+B+C=π =2ksinA-B2cosA+B2sinA+B2 =ksinA-B2sinA+B 2cosA+B2sinA+B2=sinA+B =ksinA-B2sinπ-C A+B+C=π =ksinCsinA-B2 =CsinA-B2=RHS

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon