wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC, prove the following:

ca+b=1-tan A2 tan B21+tan A2 tan B2

Open in App
Solution

Let asinA=bsinB=csinC=k ...(1)

We need to prove:
ca+b=1-tan A2 tan B21+tan A2 tan B2

Consider

LHS=ca+b =ksinCksinA+sinB using1 =2sinC2cosC22sinA+B2cosA-B2 =sinC2cosπ-A+B2sinA+B2cosA-B2 A+B+C = π =sinC2sinA+B2sinA+B2cosA-B2 =sinC2cosA-B2 ... 2RHS=1-tanA2tanB21+tanA2tanB2 =1-sinA2cosA2sinB2cosB21+sinA2cosA2sinB2cosB2 =cosA2cosB2-sinA2sinB2cosA2cosB2+sinA2sinB2 =cosA+B2cosA-B2 =cosπ-C2cosA-B2 A+B+C = π =sinC2cosA-B2=LHS from2Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon