1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Calculating Heights and Distances
In triangle A...
Question
In triangle ABC, prove the following:
cos
2
A
a
2
-
cos
2
B
b
2
-
1
a
2
-
1
b
2
Open in App
Solution
Let
a
sin
A
=
b
sin
B
=
c
sin
C
=
k
Then,
Consider the LHS of the equation
cos
2
A
a
2
-
cos
2
B
b
2
-
1
a
2
-
1
b
2
.
LHS
=
cos
2
A
a
2
-
cos
2
B
b
2
=
1
-
2
sin
2
A
a
2
-
1
-
2
sin
2
B
b
2
=
1
-
2
a
2
k
2
a
2
-
1
-
2
b
2
k
2
b
2
=
k
2
-
2
a
2
k
2
a
2
-
k
2
-
2
b
2
k
2
b
2
=
k
2
b
2
-
2
a
2
b
2
-
k
2
a
2
+
2
a
2
b
2
a
2
b
2
=
k
2
b
2
-
a
2
k
2
a
2
b
2
=
1
a
2
-
1
b
2
=
RHS
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
If a, b, c are in G.P. then
1
a
2
−
b
2
+
1
b
2
+
1
b
2
−
c
2
=
0
Q.
If the circles x
2
+ y
2
+ 2ax + c = 0 and x
2
+ y
2
+ 2by + c = 0 touch each other, then
(a)
1
a
2
+
1
b
2
=
1
c
(b)
1
a
2
+
1
b
2
=
1
c
2
(c) a + b = 2c
(d)
1
a
+
1
b
=
2
c
Q.
If a, b, c are in G.P., prove that:
(i) a (b
2
+ c
2
) = c (a
2
+ b
2
)
(ii)
a
2
b
2
c
2
1
a
3
+
1
b
3
+
1
c
3
=
a
3
+
b
3
+
c
3
(iii)
(
a
+
b
+
c
)
2
a
2
+
b
2
+
c
2
=
a
+
b
+
c
a
-
b
+
c
(iv)
1
a
2
-
b
2
+
1
b
2
=
1
b
2
-
c
2
(v) (a + 2b + 2c) (a − 2b + 2c) = a
2
+ 4c
2
.
Q.
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C (0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that
1
p
2
=
1
a
2
+
1
b
2
+
1
c
2
.