The correct option is
C −xyz
Solve: Given,
x=tan(B−C2)tanA2−(i)
y=tan(c−A2)tanB2−(ii)
z=tan(A−B2)tanC2−(ii)
From solution of triangle we know
that, tan(B−C2)=b−cb+ccotA2
on putting the value of tan(B−C2) in
eqn. (i) we get,
x=b−cb+c×cotA2×tanA2
⇒x=b−cb+c−(iii)
similary, y=c−ac+a−(iv)
and z=a−ba+b(v)
on adding equation (ii), (iv) and (v) we get
x+y+z=b−cb+c+c−ac+a+a−ba+b
⇒x+y+z=(b−c)(c+a)(a+b)+(c−a)(b+c)(a+b)+(a−b)(a+c)(b+c)(b+c)(c+a)(a+b)
=(a+b)(bc−c2+ab−ac+bc−ab+c2−ac]+(a−b)(a+c)(b+c)(b+c)(c+a)(a+b)
=(a+b)2c(b−a)+(a−b)(a+c)(b+c)(b+c)(c+a)(a+b)
=(a−b)[−2ac−2bc+ab+ac+bc+c2](a+b)(b+c)(c+a)
=(a−b)[c(c−b)−a(c−b)](a+b)(b+c)(c+a)
=(a−b)(c−a)(c−b)(a+b)(b+c)(c+a)
=(a−ba+b)(c−bb+c)(c−ac+a)
=(x)(−y)(z)x+y+z=−xyz