In △ABC, right angled at B,15sinA=12. Find the other five trigonometric ratios of the angle A. Also find the six ratios of the angle C
Open in App
Solution
Given that 15sinA=12, so sinA=1215. Let us consider DABC (see fig), right angled at B, with BC=12 and AC=15. By Pythagoras theorem AC2=AB2+BC2 152=AB2+122 AB2=152−122=225−144=81 ∴AB=√81=9 We now use the three sides to find the six trigonometric ratios of angle A and angle C. cosA=ABAC=915=35sinC=ABAC=915=35 tanA=BCAB=129=43cosC=BCAC=1215=45 cosecA=ACBC=1512=54tanC=ABBC=912=34 secA=ACAB=159=53cosecC=ACAB=159=53 cotA=ABBC=912=34secC=ACBC=1512=54 cotC=BCAB=129=43