In triangle ABC, right angled at B, if ∠A is 45∘, find the value of cot A and tan C, without using tables.
1,1
In right angle triangle ABC
Let ∠A = 45∘, ∠B = 90∘
Then ∠C = 180∘−90∘−45∘ = 45∘
Let AB = BC = a [since ∠B and ∠C = 45∘, its an isosceles right triangle]
Apply Pythagoras theorem in △ABC
AC = √a2+a2 = a√2
Using Trigonometric ratio
cot A = cot 45∘ = ABBC = a√2a√2 = 1
tan C = tan 45∘ = ABBC = a√2a√2 = 1