In triangle ABC, right angled at B, if one angle is 45o, find the value of sin A, cos C, cot A and tan C respectively.
1/√2, 1/√2, 1,1
In right angle triangle ABC, SinA=BCAC,SinC=ABAC
In right angle triangle ABC
Let ∠A=45o,angle∠B=90o
Then ∠C=180o−90o−45o=45o
Let AB = BC = a
Apply Pythagoras theorem in △ABC
AC=√(a2+a2)=a√2
Using Trigonometric ratio
sinA=sin45o=BCAC=aa√2=1√2
cosC=cos45o=BCAC=aa√2=1√2
cotA=cot45o=ABBC=a√2a√2=1
tanC=tan45o=ABBC=a√2a√2=1