wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC, right angled at C, if tanA=13, find the value of:
sinAcosB+cosAsinB

Open in App
Solution

tanA=13

BCAC=13

AC=3BC

Also, (AC)2+(BC)2=(AB)2

3(BC)2+(BC)2=(AB)2

AB=2BC

AB:BC:AC=2:1:3

sinA=BCAB=12 cosA=ACAB=32

sinB=ACAB=32 cosB=BCAB=12

sinAcosB+cosAsinB=12×12+32×32=1

Also, sinAcosB+cosAsinB=sin(A+B)

In right angled ΔABC.

A+B+C=180 (C=90)

A+B=90

sin(A+B)=sin90=1

1065175_1116977_ans_00365bc42fae453aa421311c538c328b.png

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon