In △ABC sides opposite to angles A,B,C are denoted by a,b,c respectively. Then the maximum value of a2+b2+c2R2=
(where R is circumradius)
Open in App
Solution
Using sine rule : asinA=bsinB=csinC=2R⇒a=2RsinA,b=2RsinB,c=2RsinC ⇒a2+b2+c2R2=4R2(sin2A+sin2B+sin2C)R2=4(sin2A+sin2B+sin2C)
Now, the value is maximum for equilateral triangle ⇒∠A=∠B=∠C=60∘
So, maximum value =4×3×34=9