In △ABC, the incircle touches the sides BC,CA and AB, respectively, D,E, and F. If the radius of the incircle is 4 units and BD,CE and AF are consecutive integers, then the value of s3, where s is a semi-perimeter of triangle, is
Open in App
Solution
Let BD=x,CE=x+1 and AF=x+2 Then CD=CE=x+1=s−c AE=AF=x+2=s−a BF=BD=x=s−b
On adding, we get 3s−(a+b+c)=3x+3∴s=3x+3⇒s−a=x+2,s−b=x,s−c=x+1
Now, r=△s=√s(s−a)(s−b)(s−c)△
Or, 4=√(x+2)x(x+1)3(x+1)
Or, x2+2x=48 ⇒x=6
Hence, s=21⇒s3=7