(m+n)cotθ=mcotα−ncotβ⋯(i)
By applying Equation (i) in ΔABC, we get
(1+1)cotθ=1⋅cot30∘−1⋅cot45∘⇒2cotθ=√3−1⇒cotθ=√3−12⇒tanθ=2√3−1
But θ=B+30∘,we get tan(B+30∘)=2√3−1=√3+1
⇒tanB=2+√32√3+1cotB=3√3−4
sinB=12√11−6√3⋯(ii)
Now in ΔABD, by applying the sine law, we get
BDsin30∘=ADsinB⇒BD=ADsinB×sin30∘=1×12=12
∴BC=2BD=1 unit