The correct option is
C 4Consider the given determinant.
D=∣∣
∣
∣∣e−i2AeiCeiBeiCe−i2BeiAeiBeiAe−i2C∣∣
∣
∣∣
Since, A+B+C=π
And eiπ=cosπ+isinπ=−1
ei(B+C)=ei(π−A)=−e−iAe−i(B+C)=−eiA
On takinge−iA,e−iB,e−iC common from R1,R2,R3 respectively, we get
D=∣∣
∣
∣∣e−iAei(A+C)ei(A+B)ei(B+C)e−iBei(A+B)ei(B+C)ei(A+C)e−iC∣∣
∣
∣∣
D=∣∣
∣
∣∣e−iA−e−iB−e−iC−e−iAe−iB−e−iC−e−iA−e−iBe−iC∣∣
∣
∣∣
D=e−iAe−iBe−iC∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣D=e−i(A+B+C)∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣
D=e−iπ∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣D=−1∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣
D=−1×[[1(1−1)+1(−1−1)−1(1+1)]]D=−1×[0−2−2]D=−1×−4D=4
Hence, the value of determinant is 4.
Therefore, option b is the correct option.