The correct option is
A 2cotBsin2A+sin2B−sin2CsinAsinBsinC
cos2A=1−2sin2A
=1−cos2A+1−cos2B+1+cos2C2sinAsinBsinC
=1−(cos2A+cos2B−cos2C)2sinAsinBsinC
=1−(cos2A−2sin(2B+2C)/2⋅sin(2B−2C)/2)2sinAsinBsinC.
=1−(cos2A−2sin(B+C)sin(B−C))2sinAsinBsinC
A+B+C=100o
=1−(cos2A−2sin(180−A)sin(B−C))2sinA⋅sinB⋅sinC
=1−(cos2A+2sinA⋅sin(B−C))2sinAsinBsinC
=1−(1−2sin2A+2sinAsin(B−C))2sinAsinBsinC
=1−(1+2sin2A−2sinAsin(B−C)2sinAsinBsinC
=2sinA(sinA−sin(B−C))2sinAsinBsinC
=2cos(A+B−C)2sin(A−B+C)2sinB⋅sinC
=2cos(180−2C2)sin(180−2B2)sinB⋅sinC
=2sinC⋅cosBsinB⋅sinC
=2cosBsinB=2cotB.