In triangle ABC, we are given that 3sinA+4cosB=6 and 4sinB+3cosA=1. Then the measure of the angle C is.
3sinA+4cosB=6....(i)4sinB+3cosA=1....(ii)
squaring and adding (i) and (ii)
(9sin2A+16cos2B+24sinAcosB)+(16sin2B+9cos2A+24sinBcosA)=379(sin2A+cos2A)+16(sin2B+cos2B)+24(sinAcosB+sinBcosA)=3725+24sin(A+B)=3724sin(A+B)=12sin(A+B)=1224=12
As A+B+C=π
A+B=π−Csin(π−C)=12π−C=π6⇒C=5π6=150o
Hence, optiom B is correct.