By the projection rule in △ABC
a=ccosB+bcosC
b=acosC+ccosA
a+b=ccosB+bcosC+acosC+ccosA
(a+b)(1−cosC)=c(cosB+cosA)
(a+b)(2sin2(C2))=c(cosB+cosA)
(a+b)2⋅sin2(C2)=c2(cosB+cosA)(a+b) .... (i)
and a−b=ccosB+bcosC−acosC−ccosA
(a−b)(1+cosC)=c(cosB−cosA)
(a−b)(2cos2(C2))=c(cosB−cosA)
(a−b)2cos2(C2)=c2(cosB−cosA)(a−b) .... (ii)
Adding equation (i) and (ii), we get
(a−b)2cos2(C2)+(a+b)2sin2(C2)=c2[acosB+acosA+bcosB+bcosA+...acosB−acosA−bcosB+bcosA]
∴(a−b)2cos2(C2)+(a+b)2sin2(C2)=c2.2(acosB+bcosA)
∴(a−b)2cos2(C2)+(a+b)2sin2(C2)=c2[∵c=acosB+bcosA]