wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC with the usual notations prove that
(ab)2cos2(C2)+(a+b)2sin2(C2)=c2

Open in App
Solution

By the projection rule in ABC
a=ccosB+bcosC
b=acosC+ccosA
a+b=ccosB+bcosC+acosC+ccosA
(a+b)(1cosC)=c(cosB+cosA)
(a+b)(2sin2(C2))=c(cosB+cosA)
(a+b)2sin2(C2)=c2(cosB+cosA)(a+b) .... (i)
and ab=ccosB+bcosCacosCccosA
(ab)(1+cosC)=c(cosBcosA)
(ab)(2cos2(C2))=c(cosBcosA)
(ab)2cos2(C2)=c2(cosBcosA)(ab) .... (ii)
Adding equation (i) and (ii), we get
(ab)2cos2(C2)+(a+b)2sin2(C2)=c2[acosB+acosA+bcosB+bcosA+...acosBacosAbcosB+bcosA]
(ab)2cos2(C2)+(a+b)2sin2(C2)=c2.2(acosB+bcosA)
(ab)2cos2(C2)+(a+b)2sin2(C2)=c2[c=acosB+bcosA]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon