wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC with usual notations, acosA+bcosB+ccosCa+b+c=12, then the value of sinA+sinB+sinCsinAsinBsinC is

Open in App
Solution

acosA+bcosB+ccosCa+b+c=12
acosA+bcosB+ccosC=a+b+c2
Using sine rule, we get
asinA=bsinB=csinC=k (say)

Now,
2[sinAcosA+sinBcosB+sinCcosC]=sinA+sinB+sinCsin2A+sin2B+sin2C=sinA+sinB+sinC
In a ABC,
sin2A+sin2B+sin2C=4sinAsinBsinC
So, 4sinAsinBsinC=sinA+sinB+sinC
sinA+sinB+sinCsinAsinBsinC=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon