acosA+bcosB+ccosCa+b+c=12
⇒acosA+bcosB+ccosC=a+b+c2
Using sine rule, we get
asinA=bsinB=csinC=k (say)
Now,
2[sinAcosA+sinBcosB+sinCcosC]=sinA+sinB+sinC⇒sin2A+sin2B+sin2C=sinA+sinB+sinC
In a △ABC,
sin2A+sin2B+sin2C=4sinAsinBsinC
So, 4sinAsinBsinC=sinA+sinB+sinC
∴sinA+sinB+sinCsinAsinBsinC=4