wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In DFH, point E is the midpoint of hypotenuse DF segment HE is perpendicular to the diagonal DF, segment EG is perpendicular to segment FH,segment EK is perpendicular to segment DH.Show that EG2=FG×EK
1334285_c32125a827544d2590500c6d9b07e938.png

Open in App
Solution

REF.Image
Given : G=90=K=H=DEH
EGHK is a square
EF=ED
To prove : EG2=FG×EK
in Δ EFH & EHD
EF=ED (Given) _______ (1)
EH common sie ________ (2)
DEH=FEH=90
ΔDEHΔFEH (SAS congruency)
FH=DH
DFG=FDG=45
In ΔFGE
tan < EFG = EGFG
tan45=EGFG
EG=FG _______ (3)
EG=EK [ EGHK is square]________ (4)
from (3) & (4)
(EG)2=FG×EK

1213150_1334285_ans_d87df9b486e243ae9d3ddd039b11ef8d.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Classification of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon