It is given that ∠PQR=900, QS⊥PR, PQ=a, QR=b, RP=c and QS=p
Consider,
PQ2=RP×PS⇒a2=c×PS⇒PS=a2c.......(1)
Similarly, we have,
QR2=RP×RS⇒b2=c×RS⇒RS=b2c.......(2)
And finally,
QS2=RS×PS⇒p2=RS×PS.......(3)
Substitute equations (1) and (2) in equation (3), we get
QS2=RS×PSp2=b2c×a2c⇒p2=a2b2c2⇒p=√a2b2c2⇒p=abc⇒pc=ab
Hence, pc=ab.