The correct option is
A 3:7Given,
LM∥QR,
PM:MR=3:4Construct: A perpendicular from M on LR meeting LR at J
PMMR=34PM+MRMR=3+44PRMR=74Now, In
△PLM and
△PQR∠LPM=∠QPR (Common angle)
∠PLM=∠PQR (Corresponding angles)
∠PML=∠PRQ (Corresponding angles)
Thus,
△PLM∼△PQR (AAA rule)
Hence,
PLPQ=LMQR=PMPR (Corresponding sides)
PLPQ=LMQR=37Now, In
△LMN and
△QNR,
∠LNM=∠QNR (Vertically Opposite angles)
∠NLM=∠NRQ (Alternate angles)
∠NML=∠NQR (Alternate angles)
△LMN∼△RQN (AAA rule)
thus,
LNNR=LMQR (Corresponding sides)
LNNR=37Area of triangle =
12base×heightNow,
A(△LMN)A(△MNR)=12MJ×LN12MJ×NRA(△LMN)A(△MNR)=LNNRA(△LMN)A(△MNR)=37