wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

In PQR,QM is perpendicular to PR and PR2PQ2=QR2. Prove that QM2=PM×MR.

Open in App
Solution

Given:
In ∆ PQR, PR²-PQ²= QR² & QM ⊥ PR
To Prove: QM² = PM × MR
Proof:
Since, PR² - PQ²= QR²
PR² = PQ² + QR²
So, ∆ PQR is a right angled triangle at Q.
In ∆ QMR & ∆PMQ
∠QMR = ∠PMQ [ Each 90°]
∠MQR = ∠QPM [each equal to (90°- ∠R)]
∆ QMR ~ ∆PMQ [ by AA similarity criterion]
By property of area of similar triangles,
ar(∆ QMR ) / ar(∆PMQ)= QM²/PM²
1/2× MR × QM / ½ × PM ×QM = QM²/PM²
[ Area of triangle= ½ base × height]
MR / PM = QM²/PM²
QM² × PM = PM² × MR
QM² =( PM² × MR)/ PM
QM² = PM × MR



1139682_1136564_ans_541ddf1d6e2a4938af054fb38e1df017.webp

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Any Point Equidistant from the End Points of a Segment Lies on the Perpendicular Bisector
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon