In △ABC, AB=8 cm, ∠A=45∘, ∠B=60∘.
Find the area of the triangle.
Let AD = x , then DB = (8-x) cm
In △ADC, angles are 45∘,45∘,90∘ the corresponding sides can be calculated as
⇒sin(45):sin(45):sin(90)
⇒1√2:1√2:1
⇒1:1:√2
45∘ 45∘ 90∘ 1 :1 :√2 ↓ ↓ ↓ AD CD AC ↓ ↓ ↓ x x √2x
In △DBC, angles are 30∘, 60∘, 90∘ the corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘ 60∘ 90∘ 1 :√3 :2 ↓ ↓ ↓ DB CD CB ↓ ↓ ↓ x√3 x 2x√3
Now, AB = AD+DB=8(x+x√3)=8x(1+1√3)=8x(√3+1√3)=8x=8√3(√3+1)×(√3−1)(√3−1)=8√3(√3−1)2=4√3(√3−1)
Area of triangle = 12 × AB × CD=12 × 8× x=12 × 8× 4√3(√3−1)
Hence, area = 16√3(√3−1) cm2
= 48−16√3 cm2