The correct option is D Area(△EDC+△DBF+△AFE)=2Area△DEF
Let AB,BC,AC be 3x,3y,3z
So, DF,BD,EC be x,y,z
A(ΔEDC)A(ΔABC)=12×EC×CDsinC12×AC×BCsinC
A(ΔEDC)A(ΔABC)=12×z×2ysinC12×3z×3ysinC
A(ΔEDC)A(ΔABC)=29
Hence, option A is correct.
A(ΔABC)A(ΔBFD)=12×AB×BCsinB12×BF×BDsinB
A(ΔABC)A(ΔBFD)=12×3x×3ysinB12×x×ysinB
A(ΔABC)A(ΔBFD)=91
A(ΔABC)A(ΔBFD)−1=91−1
A(AFDC)A(ΔBFD)=81
A(ΔBFD)=18×A(AFDC)
Hence, option B is also correct.
Same can be proved for option C as in A.
A(ΔEDC)+A(ΔDBF)+A(ΔAFE)=2A(ΔDEF)
A(ΔABC)−A(ΔDEF)=2A(ΔDEF)
A(ΔABC)=3A(ΔDEF) which is incorrect since A(ΔABC)=92A(ΔDEF)