Equation is,
x−1cosθ=y−2sinθ=√63
x=√6cosθ3+1,y=√6sinθ3+2
(√6cosθ3+1,√6sinθ3+2)
x+y=4
√6cosθ3+1+√6sinθ3+2=4
√6cosθ+√6sinθ=3
cosθ+sinθ=√3√2
(cosθ+sinθ)2=3/2
cos2θ+sin2θ+2sinθcosθ=3/2
2sinθcosθ=1/2
sin2θ=12
2θ=π/6or30∘
θ=15∘or90∘−15=75∘
Required line is the positive direction of either 15o or 75o to the x-axis.