Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
Let D(x,y) be the point of intersection of the line x−5y+15=0
Let P divides the segment A(2,1) and B(−3,6) in the ratio k:1
Then by the formula of segment intersections, we have,
x=−3k+2k+1 and y=6k+1k+1
Substituting the values of x and y in the equation
x−5y+15=0, we have,
⇒−3k+2k+1−5(6k+1k+1)+15=0
⇒−3k+2k+1−5(6k+1k+1)+15(k+1)k+1=0
⇒−3k+2−5(6k+1)+15(k+1)=0
⇒3k+2−30k−5+15k+15=0
⇒−12k+12=0
k=1
Thus the points of intersection, P(−3k+2k+1,6k+1k+1)=P(−12,72).