Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then (x,y)=(mx2+nx1m+n,my2+ny1m+n)
Let the ratio be k:1
Substituting (x1,y1)=(4,4) and (x2,y2)=(7,7) in the section formula, we get
(k(7)+1(4)k+1,k(7)+1(4)k+1)=(−1,−1)
(7k+4k+1,7k+4k+1)=(−1,−1)
Comparing the x - coordinate,
⇒7k+4k+1=−1
⇒7k+4=−k−1
8k=−5
k=−58
Hence, the ratio is 5:8 externally.