In what ratio does the point (−2,3) divide the line segment joining the points (−3,5) and (4,−9)?
Open in App
Solution
We know that the section formula states that if a point P(x,y) lies on line segment AB joining the points A(x1,y1) and B(x2,y2)and satisfies AP:PB=m:n, then we say that P divides internally AB in the ratio m:n. The coordinates of the point of division has the coordinates;
P=(mx2+nx1m+n,my2+ny1m+n)
Let P(−2,3) divides the line segment AB joining the points A(−3,5) and B(4,−9) in the ratio m:n, then using section formula we get,
P=(mx2+nx1m+n,my2+ny1m+n)
⇒(−2,3)=((m×4)+(n×−3)m+n,(m×−9)+(n×5)m+n)
⇒(−2,3)=(4m−3nm+n,−9m+5nm+n)⇒−2=4m−3nm+n
⇒−2(m+n)=4m−3n
⇒−2m−2n=4m−3n
⇒4m+2m=3n−2n
⇒6m=n
⇒mn=16
⇒m:n=1:6
Hence, the point (−2,3) divides the line segment joining the points (−3,5) and (4,−9) in the ratio 1:6.