The correct option is
C (0,∞)∣∣
∣
∣∣a2+xabacabb2+xbcacbcc2+x∣∣
∣
∣∣
1abc∣∣
∣
∣∣a(a2+x)a2ba2cab2b(b2+x)b2cac2bc2c(c2+x)∣∣
∣
∣∣
∣∣
∣
∣∣(a2+x)a2a2b2(b2+x)b2c2c2(c2+x)∣∣
∣
∣∣
R1→R1+R2+R3
∣∣
∣
∣∣(a2+b2+c2+x)(a2+b2+c2+x)(a2+b2+c2+x)b2(b2+x)b2c2c2(c2+x)∣∣
∣
∣∣
(a2+b2+c2+x)∣∣
∣
∣∣111b2(b2+x)b2c2c2(c2+x)∣∣
∣
∣∣
C1→C1−C3
(a2+b2+c2+x)∣∣
∣
∣∣0110(b2+x)b2−xc2(c2+x)∣∣
∣
∣∣
⇒f(x)=x2(a2+b2+c2+x)
Now, f′(x)=x2+2x(a2+b2+c2+x)
⇒f′(x)=3x2+2x(a2+b2+c2)
⇒f′(x)=x(3x+2(a2+b2+c2))
For strictly increasing , f′(x)>0
⇒x(3x+2(a2+b2+c2))>0
⇒x>0
Therefore, f(x) is increasing in (0,∞)
Hence, option 'C' is correct.