In Z, the set of all integers, the inverse of -7w.r.t.*defined by a*b=a+b+7,∀a,b∈Z is
-14
7
14
-7
Let us consider the identity element k for any element a∈Z.
Now,
a*k=aa+k+7=a[∵a*b=a+b+7]∴k=-7
So, the identity element is -7.
For the inverse element,
⇒a*a-1=-7⇒a+a-1+7=-7[∵a*b=a+b+7]⇒a+a-1=-14⇒a-1=-14-a⇒a-1=-14+7[∵a=-7]⇒a-1=-7
Hence, the inverse of -7 is -7.