1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
Indicate the ...
Question
Indicate the relation which can hold in their respective domain for infinite values of
x
.
A
tan
∣
∣
tan
−
1
x
∣
∣
=
|
x
|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cot
∣
∣
cot
−
1
x
∣
∣
=
|
x
|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan
−
1
|
tan
x
|
=
|
x
|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin
∣
∣
sin
−
1
x
∣
∣
=
|
x
|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are
A
tan
∣
∣
tan
−
1
x
∣
∣
=
|
x
|
B
cot
∣
∣
cot
−
1
x
∣
∣
=
|
x
|
C
sin
∣
∣
sin
−
1
x
∣
∣
=
|
x
|
D
tan
−
1
|
tan
x
|
=
|
x
|
t
a
n
(
t
a
n
−
1
(
x
)
)
for
x
<
0
t
a
n
(
t
a
n
−
1
(
x
)
)
implies
=
t
a
n
(
−
t
a
n
−
1
(
x
)
)
=
−
t
a
n
(
t
a
n
−
1
(
x
)
)
=
−
x
...(i)
for
x
>
0
t
a
n
(
t
a
n
−
1
(
x
)
)
implies
=
t
a
n
(
t
a
n
−
1
(
x
)
)
=
x
...(ii)
Hence
t
a
n
(
|
t
a
n
−
1
(
x
)
|
)
=
|
x
|
c
o
t
(
c
o
t
−
1
(
x
)
)
for
x
<
0
c
o
t
(
c
o
t
−
1
(
x
)
)
implies
=
c
o
t
(
π
−
c
o
t
−
1
(
x
)
)
=
−
c
o
t
(
c
o
t
−
1
(
x
)
)
=
−
x
for
x
>
0
c
o
t
(
c
o
t
−
1
(
x
)
)
implies
=
c
o
t
(
c
o
t
−
1
(
x
)
)
=
x
...(ii)
Hence
c
o
t
(
|
c
o
t
−
1
(
x
)
|
)
=
|
x
|
s
i
n
(
s
i
n
−
1
(
x
)
)
for
x
<
0
s
i
n
(
s
i
n
−
1
(
x
)
)
implies
=
s
i
n
(
−
s
i
n
−
1
(
x
)
)
=
−
s
i
n
(
s
i
n
−
1
(
x
)
)
=
−
x
for
x
>
0
s
i
n
(
s
i
n
−
1
(
x
)
)
implies
=
s
i
n
(
s
i
n
−
1
(
x
)
)
=
x
Hence
s
i
n
(
|
s
i
n
−
1
(
x
)
|
)
=
|
x
|
t
a
n
−
1
(
t
a
n
(
x
)
)
For
x
ϵ
(
π
2
,
π
]
∪
[
−
3
π
2
,
2
π
)
t
a
n
−
1
(
t
a
n
(
−
x
)
)
=
t
a
n
−
1
(
−
t
a
n
(
x
)
)
=
−
t
a
n
−
1
(
t
a
n
(
x
)
)
=
−
x
For
x
ϵ
[
0
,
π
2
)
∪
[
π
,
3
π
2
)
t
a
n
−
1
(
t
a
n
(
x
)
)
=
x
Hence
t
a
n
−
1
|
t
a
n
(
x
)
|
=
|
x
|
Suggest Corrections
0
Similar questions
Q.
Number of false relations of the following
(
i
)
t
a
n
|
t
a
n
−
1
x
|
=
|
x
|
(
i
i
)
c
o
t
|
c
o
t
−
1
x
|
=
|
x
|
(
i
i
i
)
t
a
n
−
1
|
t
a
n
x
|
=
|
x
|
(
i
v
)
s
i
n
|
s
i
n
−
1
x
|
=
|
x
|
is:
Q.
The set of values of
x
for which
tan
−
1
x
√
1
−
x
2
=
sin
−
1
x
holds is
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
s
i
n
−
1
(
1
−
x
)
−
2
s
i
n
−
1
x
=
π
/
2
.
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
(
1
−
x
)
=
c
o
s
−
1
x
, then prove that x is equal to
0
,
1
/
2
.
Q.
The value of x for which
tan
−
1
x
+
sin
−
1
x
=
tan
−
1
2
x
is