∫1/20dx√(1+x2)√1−x2
Let I =∫1/20dx√(1+x2)√1−x2Putx=sinθ⇒ dx=cosθdθAs x→0, then θ→0and x → 12, then θ →π6∴ I=∫π/60cosθ(1+sin2θ) cosθdθ=∫π/6011+sin2θdθ=∫π/601cos2θ (sec2θ +tan2θ)=∫π/60sec2θ sec2θ+tan2θdθ=∫π/60sec2θ1+2tan2θdθAgain, put tanθ=t⇒sec2θdθ=dtAs θ→0, then t→0 and θ→π6, then t→1√3∴I=∫1/√30dt1+2t2=12∫1/√30dt(1√2)2+t2=12.11√2[tan−1t1√2]1/√30=1√2[tan−1√23−0]=1√2tan−1(√23)