Consider the given integral.
I=∫10dxx+√x
I=∫10dx√x(1+√x)
Let t=1+√x
dtdx=12√x
2dt=1√xdx
Therefore,
I=2∫21dtt
I=2[ln(t)]21
I=2[ln(2)−ln(1)]
I=2ln(2)
Hence, the value of integral is 2ln(2).